Structural Calculations

For

Cascade Public Library 105 N Front St

Cascade (100), Idaho

PE Job \#: 2023-14473

Design Criteria

Governing Code:
2018 IBC

Snow Criteria	
Roof Snow Load (P_{f})	100 psf
Ground Load (P_{g})	100 psf
Exposure Factor (C_{e})	1.0
Thermal Factor (C_{t})	1.0
Importance (I_{s})	1.0

Seismic Criteria

Live Loads

Roof Dead Loads:

Deck	1.5
Insulation	2.0
Roofing	3.0
Joist	2.5
Ceiling	3.0
Misc	4.5
TOTAL	17 p

Exterior Wall Dead Loads:

Studs	2.0
Siding	2.5
Insulation	0.5
Gyp. Board	2.5
Sheating	1.5
Misc	3.0
TOTAL	$\mathbf{1 2 ~ p s f}$

Wall Material	Design Base Shear	Seismic Response Coefficient, R
OSB	.07Wp	6.5
GYP	.23Wp	2
e-Inf. CMU	.23Wp	2

Soil Bearing

	Typical
	1500 psf
	24

Floor Dead Loads:

Interior Wall Dead Loads:

OSB Seismic Loading Analysis

$$
\begin{array}{rlr}
\mathrm{S}_{\mathrm{s}}= & 0.493 & \mathrm{C}_{\mathrm{T}}=0.020 \\
\mathrm{~S}_{1}= & 0.152 & \mathrm{~h}_{\mathrm{n}}=10.00 \mathrm{ft} \\
\mathrm{~F}_{\mathrm{a}}= & 1.4 & \\
\mathrm{~F}_{\mathrm{V}}= & 2.2 & \\
\mathrm{R}= & 6.5 & \\
\mathrm{I}_{\mathrm{E}}= & 1.0 & \\
& \\
\mathrm{~S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{~S}_{\mathrm{s}}= & 0.6927 \\
\mathrm{~S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{V}} \mathrm{~S}_{1}= & 0.3332 & \\
\mathrm{~S}_{\mathrm{DS}}=2 / 3 \mathrm{~S}_{\mathrm{MS}}= & 0.4618 & \text { Seismic Design Category } \\
\mathrm{S}_{\mathrm{D} 1}=2 / 3 \mathrm{~S}_{\mathrm{M} 1}= & 0.2221 & \mathrm{D} \\
\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)= & 0.0710 & \\
\mathrm{~T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{T}} \mathrm{~h}_{\mathrm{n}}^{3 / 4}= & 0.1125 & \text { Controls } \\
\mathrm{C}_{\mathrm{s}}<\mathrm{S}_{\mathrm{D} 1} /\left[\left(\mathrm{R} / I_{\mathrm{E}}\right) \mathrm{T}\right]= & 0.3038 & \\
\mathrm{C}_{\mathrm{s}}>0.044 \mathrm{~S}_{\mathrm{DS}} \mathrm{I}_{\mathrm{E}}= & 0.0203 & \\
\mathrm{C}_{\mathrm{s}}>0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)= & 0.0117 \\
\mathrm{~V}=\mathrm{C}_{\mathrm{s}} \mathrm{~W}= & 0.0710 \mathrm{~W} \\
0.7 * \mathrm{~V}= & 0.0497 \mathrm{~W}
\end{array}
$$

OSB Seismic Component Loading

$\mathrm{w}_{\mathrm{p}}=$	1	psf	weight of element
			Portion of seismic shear load at the level of the diaphragm, required to be transferred to the components of the vertical seismic-force-resisting system beacause of the offsets or changes in the stiffness of the vertical
$\mathrm{V}_{\mathrm{px}}=$	0	plf	components above of below the diaphragm.
$\mathrm{w}_{\mathrm{w}}=$	12	psf	weight of wall
$L_{b}=$	51	ft	length of the building

NOTE: Use 1 for unit weight to achieve an answer per element unit weight

Connections

$$
\begin{array}{lll}
\mathrm{F}_{\mathrm{p}}=0.133 \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}= & \mathbf{0 . 0 6} & \mathrm{psf} \\
\text { or } & & \\
\mathrm{F}_{\mathrm{p}}=0.05 \mathrm{w}_{\mathrm{p}}= & \mathbf{0 . 0 5} & \mathrm{psf}
\end{array}
$$

Diaphragm

$$
\begin{array}{rlll}
\mathrm{F}_{\mathrm{p}} & =0.2 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}+\mathrm{V}_{\mathrm{px}}= & \mathbf{0 . 0 9} & \mathrm{psf} \\
\mathrm{~F}_{\mathrm{p}, \text { max }} & =0.4 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}+\mathrm{V}_{\mathrm{px}}= & \mathbf{0 . 1 8} & \mathrm{psf}
\end{array}
$$

Bearing Walls \& Shear Walls

Out of Plane Forces

$$
\begin{align*}
& F_{p}=0.40 I_{E} S_{D S} w_{w}= \\
& F_{p}=0.10 w_{w}=
\end{align*}
$$

$$
2.21
$$

psf Controls
psf
12.11 .1
12.11 .1

Anchorage

$$
\begin{array}{lccl}
\mathrm{F}_{\mathrm{p}}=0.40 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{w}} \mathrm{k}_{\mathrm{a}}= & 3.3 & \mathrm{psf} & \\
\mathrm{~F}_{\mathrm{p}}=0.2 \mathrm{I}_{\mathrm{E}} \mathrm{k}_{\mathrm{a}} \mathrm{w}_{\mathrm{w}}= & 3.6060 & \mathrm{psf} & \text { Controls } \\
\mathrm{k}_{\mathrm{a}}=1.0+\mathrm{L}_{\mathrm{b}} / 100= & 1.5050 & & \\
\end{array}
$$

Note: 12.11.2.2.2 The strength design forces for steel elements of the structural wall anchorage system, with exception of anchor bolts and reinforcing steel, shall be increased by 1.4 times the forces otherwise noted above.

Re-Inf. CMU Seismic Loading Analysis

$\mathrm{S}_{\mathrm{s}}=$	0.493	$\mathrm{C}_{\mathrm{T}}=0.020$	
$\mathrm{S}_{1}=$	0.152	$\mathrm{h}_{\mathrm{n}}=10.00$	ft
$\mathrm{F}_{\mathrm{a}}=$	1.4		
$\mathrm{F}_{\mathrm{v}}=$	2.2		
$\mathrm{R}=$	2.0		
$\mathrm{I}_{\mathrm{E}}=$	1.0		
$\mathrm{S}_{\text {MS }}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\text {s }}=$	0.6927		
$\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{V}} \mathrm{S}_{1}=$	0.3332		
		Seismic Design Category	
$\mathrm{S}_{\mathrm{DS}}=2 / 3 \mathrm{~S}_{\mathrm{ms}}=$	0.4618	c	
$\mathrm{S}_{\mathrm{D} 1}=2 / 3 \mathrm{~S}_{\mathrm{M} 1}=$	0.2221	D	
$\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{E}}\right)=$	0.2309	Controls	
$\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{T}} \mathrm{h}^{314}=$	0.1125		
$\mathrm{C}_{\mathrm{s}}<\mathrm{S}_{\mathrm{D} 1} /[(\mathrm{R} / \mathrm{E}) \mathrm{T}]=$	0.9875		
$\mathrm{C}_{\mathrm{s}}>0.044 \mathrm{~S}_{\text {DS }} \mathrm{E}_{\mathrm{E}}=$	0.0203		
$\mathrm{C}_{\mathrm{s}}>0.5 \mathrm{~S}_{1} /(\mathrm{R} / \mathrm{E})=$	0.0380		
$\mathrm{V}=\mathrm{C}_{\mathrm{s}} \mathrm{W}=$	0.2309 W		
$0.7 * V=$	0.1616 W		

Re-Inf. CMU Seismic Component Loading

$\mathrm{w}_{\mathrm{p}}=$	1	psf	weight of element
$\mathrm{V}_{\mathrm{px}}=$	0	plf	Portion of seismic shear load at the level of the diaphragm, required to be transferred to the components of the vertical seismic-force-resisting system beacause of the offsets or changes in the stiffness of the vertical components above of below the diaphragm.
$\mathrm{w}_{\mathrm{w}}=$	12	psf	weight of wall
$\mathrm{L}_{\mathrm{b}}=$	51	ft	length of the building

NOTE: Use 1 for unit weight to achieve an answer per element unit weight
Connections

$\mathrm{F}_{\mathrm{p}}=$$0.133 \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}=$ or	$\mathbf{0 . 0 6}$	psf
$\mathrm{F}_{\mathrm{p}}=0.05 \mathrm{w}_{\mathrm{p}}=$	$\mathbf{0 . 0 5}$	psf

Diaphragm

$$
\mathrm{F}_{\mathrm{p}}=0.2 \mathrm{I}_{\mathrm{E}} \mathrm{~S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{p}}+\mathrm{V}_{\mathrm{px}}=0.09 \quad \mathrm{psf}
$$

Bearing Walls \& Shear Walls
Out of Plane Forces

$\mathrm{F}_{\mathrm{p}}=0.40 \mathrm{I}_{\mathrm{E}} \mathrm{S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{w}}=$	$\mathbf{2 . 2 1}$	psf	Controls	12.11 .1
$\mathrm{~F}_{\mathrm{p}}=0.10 \mathrm{w}_{\mathrm{w}}=$	1.20	psf		12.11 .1
				$12.11-1$
$\mathrm{~F}_{\mathrm{p}}=0.40 \mathrm{I}_{\mathrm{E}} \mathrm{S}_{\mathrm{DS}} \mathrm{w}_{\mathrm{w}} \mathrm{k}_{\mathrm{a}}=$	3.3	psf		
$\mathrm{F}_{\mathrm{p}}=0.2 \mathrm{I}_{\mathrm{E}} \mathrm{k}_{\mathrm{a}} \mathrm{w}_{\mathrm{w}}=$	3.6060	psf	Controls	$12.11-2$

Note: 12.11.2.2.2 The strength design forces for steel elements of the structural wall anchorage system, with exception of anchor bolts and reinforcing steel, shall be increased by 1.4 times the forces otherwise noted above.

WIND LOADING ANALYSIS - Main Wind-Force Resisting System
 Per ASCE 7-16 Code for Enclosed or Partially Enclosed Buildings
 Using Part 1 of ASCE Chapter 28 for Low-Rise Buildings (Envelope Procedure)

Check Criteria for a Low-Rise Building:
(Section 26.2)

1. Is $h<=60$ ' ?

Yes, O.K.
2. Is $h<=$ Lesser of L or B ?

Yes, O.K.
External Pressure Coeff's., GCpf (Fig. 28.3-1):
(For values, see following wind load tabulations.)
Positive \& Negative Internal Pressure Coefficients, GCpi (Table 26.13-1):

$$
\begin{array}{cc}
\text { +GCpi Coef. }= & 0.18 \\
\text {-GCpi Coef. }= & \text { (positive internal pressure) } \\
-0.18 & \text { (negative internal pressure) }
\end{array}
$$

If $\mathrm{h}<15$ then: $\mathrm{Kh}=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$ (Table 26.10-1, Footnote 1)
If $h>=15$ then: $\mathrm{Kh}=2.01^{*}(\mathrm{z} / \mathrm{zg})^{\wedge}(2 / \alpha) \quad$ (Table 26.10-1, Footnote 1)

$\alpha=$	9.50	(Table 26.11-1)
$\mathrm{zg}=$	900	(Table 26.11-1)
Kh =	0.85	(Kh = Kz evaluated at $z=h$)

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 26.10.2, Eq. 26.10-1)

$$
\mathrm{qh}=24.43 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{*} \mathrm{Kzt}^{*} \mathrm{Kd}^{*} \mathrm{~V}^{\wedge} 2 \text { (} \mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h} \text {) }
$$

Design Net External Wind Pressures (Sect. 28.3.1):
p = qh*[(GCpf) - (+/-GCpi)] (psf, Eq. 28.3-1)
Wall and Roof End Zone Widths 'a' and '2*a' (Fig. 28.3-1):

a	$=3.00$
$2^{*} \mathrm{at}$.	
	$=6.00$
ft.	

MWFRS Wind Load for Load Case A				MWFRS Wind Load for Load Case B			
Surface	GCpf	p = Net Pressures (psf)		Surface	*GCpf	p = Net Pressures (psf)	
		(w/ +GCpi)	(w/ -GCpi)			(w/ +GCpi)	(w/ -GCpi)
Zone 1	0.41	5.52	14.32	Zone 1	-0.45	-15.39	-6.60
Zone 2	-0.69	-21.25	-12.46	Zone 2	-0.69	-21.25	-12.46
Zone 3	-0.38	-13.56	-4.77	Zone 3	-0.37	-13.44	-4.64
Zone 4	-0.30	-11.64	-2.85	Zone 4	-0.45	-15.39	-6.60
Zone 5	---	---	---	Zone 5	0.40	5.37	14.17
Zone 6	---	---	---	Zone 6	-0.29	-11.48	-2.69
Zone 1E	0.62	10.72	19.52	Zone 1E	-0.48	-16.12	-7.33
Zone 2E	-1.07	-30.54	-21.74	Zone 2E	-1.07	-30.54	-21.74
Zone 3E	-0.54	-17.53	-8.74	Zone 3E	-0.53	-17.34	-8.55
Zone 4E	-0.44	-15.14	-6.35	Zone 4E	-0.48	-16.12	-7.33
Zone 5E	---	---	---	Zone 5E	0.61	10.50	19.30
Zone 6E	---	---	---	Zone 6E	-0.43	-14.90	-6.11

*Note: Use roof angle $\theta=0$ degrees for Longitudinal Direction.
For Case A when GCpf is neg. in Zones $2 / 2 \mathrm{E}$:
For Case B when GCpf is neg. in Zones 2/2E:
Zones 2/2E dist. = 10.00 ft. (Fig. 28.3-1)
Zones 2/2E dist. $=22.50$ ft. (Fig. 28.3-1) Remainder of roof Zones 2/2E extending to ridge line shall use roof Zones 3/3E pressure coefficients.

MWFRS Wind Load for Load Case A, Torsional Case				MWFRS Wind Load for Case B, Torsional Case			
Surface	GCpf	$\mathrm{p}=$ Net Pressure (psf)		Surface	GCpf	p = Net Pressure (psf)	
		(w/ +GCpi)	(w/ -GCpi)			(w/ +GCpi)	(w/-GCpi)
Zone 1T	---	1.38	3.58	Zone 1T	---	-3.85	-1.65
Zone 2T	---	-5.31	-3.11	Zone 2T	---	-5.31	-3.11
Zone 3T	---	-3.39	-1.19	Zone 3T	---	-3.36	-1.16
Zone 4T	---	-2.91	-0.71	Zone 4T	---	-3.85	-1.65
Zone 5T	---	---	---	Zone 5T	---	1.34	3.54
Zone 6T	---	---	---	Zone 6T	---	-2.87	-0.67

Notes: 1. For Load Case A (Transverse), Load Case B (Longitudinal), and Torsional Cases:
Zone 1 is windward wall for interior zone. Zone 1E is windward wall for end zone.
Zone 2 is windward roof for interior zone.
Zone 3 is leeward roof for interior zone.
Zone 4 is leeward wall for interior zone.
Zones 5 and 6 are sidewalls.
Zone 1T is windward wall for torsional case
Zone 3T is leeward roof for torsional case
Zone 2E is windward roof for end zone.
Zone 3E is leeward roof for end zone.
Zone 4E is leeward wall for end zone.
Zone $5 E \& 6 E$ is sidewalls for end zone.
Zone 2T is windward roof for torsional case.
Zone 4T is leeward wall for torsional case.
Zones 5T and 6T are sidewalls for torsional case.
2. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
3. Building must be designed for all wind directions using the 8 load cases shown below. The load cases are applied to each building corner in turn as the reference corner.
4. Wind loads for torsional cases are 25% of respective transverse or longitudinal zone load values.

Torsional loading shall apply to all 8 basic load cases applied at each reference corner.
Exception: One-story buildings with "h" <= 30', buildings <= 2 stories framed with light frame construction, and buildings <=2 stories designed with flexible diaphragms need not be designed for torsional load cases.
5. Per Code Section 28.3.4, the minimum wind load for MWFRS shall not be less than 16 psf. for wall pressure and 8psf for roof pressure

Load Case B

WIND LOADING ANALYSIS - Wall Components and Cladding

Per ASCE 7-16 Code for Buildings of Any Height
Using Part 1 \& 3: Analytical Procedure (Section 30.3 \& 30.5)

Input Data:

Wind Speed V =	115	mph (Wind Map, Figure 26.5-1A-C) (Table 1.5-1 Risk Category) (Sect. 26.7) ft. (hr >= he) ft. (he <= hr) ft. (Normal to Building Ridge) ft . (Parallel to Building Ridge) (Gable or Monoslope) (Sect. 26.8.2 \& Figure 26.8-1) (Table 26.6-1) (Sect. 26.2) (Girt, Siding, Wall, or Fastener) ft.^2 (Area Tributary to C\&C) Span Length * Length/3 (Sec 26.2)	
g. Clas	II		
posure Catego	C		
Ridge Height, hr	10		
Eave Height, h	9		
Building Widt	20		
Building Length	50.5		
Roof Typ	Gable		
Topo. Factor, K	1		
Direct. Factor, Kd	0.85		
Enclosed? (Y/N)	Y		
Hurricane Region?	N		
Component Name	Wall		
Effective Area, Ae	27		
Note: Wor	A		
Paramete	C		

Roof Angle, $\theta=5.71$ deg.
Mean Roof Ht., $\mathrm{h}=9.00 \mathrm{ft}$. ($\mathrm{h}=$ he, for roof angle $<=10 \mathrm{deg}$.)
Wall External Pressure Coefficients, GCp:

GCp Zone 4 Pos. $=$	0.83	(Fig. 30.3-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg})$.
GCp Zone 5 Pos. $=$	0.83	(Fig. 30.3-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg})$.
GCp Zone 4 Neg. $=$		
GCp Zone 5 Neg. $=$	-0.92	(Fig. 30.3-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg})$.
-1.12	(Fig. 30.3-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg})$.	

Positive \& Negative Internal Pressure Coefficients, GCpi (Table 26.13-1):

+ GCpi Coef. $=$	0.18	(positive internal pressure)
-GCpi Coef. $=$	-0.18	(negative internal pressure)

If $z<=15$ then: $K z=2.01^{*}(15 / z g)^{\wedge}(2 / \alpha)$, If $z>15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$ (Table 26.10-1, Footnote 1)

$\alpha=$	9.50	(Table 26.11-1)
$\mathrm{zg}=$	900	(Table 26.11-1)
Kh =	0.85	$(\mathrm{Kh}=\mathrm{Kz}$ evaluated at $\mathrm{z}=\mathrm{h})$

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 26.10.2, Eq. 26.10-1)

$$
\mathrm{qh}=24.43 \mathrm{psf} \quad \mathrm{qh}=0.00256^{\star} \mathrm{Kh}^{\star} K \mathrm{Kt}^{\star} K^{*} \mathrm{~V}^{\star} \mathrm{V}^{\wedge} 2(\mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h})
$$

Design Net External Wind Pressures (Sect. 30.3.2 or 30.5.2):
For $\mathrm{h}<=60 \mathrm{ft}$: $\mathrm{p}=\mathrm{qh}^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For h > 60 ft : $\mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})(\mathrm{psf})$
where: $\mathrm{q}=\mathrm{qz}$ for windward walls, $\mathrm{q}=\mathrm{qh}$ for leeward walls and side walls
qi $=$ qh for all walls (conservatively assumed per Sect. 30.5.2)

Wind Load Tabulation for Wall Components \& Cladding

Component	(ft.)	Kh	$\begin{gathered} \hline \text { qh } \\ \text { (psf) } \end{gathered}$	$\mathrm{p}=$ Net Design Pressures (psf)			
				Zone 4 (+)	Zone 4 (-)	Zone 5 (+)	Zone $5(-)$
Wall For $z=h r:$	0	0.85	24.43	24.71	-26.91	24.71	-31.83
	10.00	0.85	24.43	24.71	-26.91	24.71	-31.83
$\begin{array}{r} \text { For } z=\text { he: } \\ \text { For } z=h: \end{array}$	9.00	0.85	24.43	24.71	-26.91	24.71	-31.83
	9.00	0.85	24.43	24.71	-26.91	24.71	-31.83

Notes: 1. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
2. Width of Zone 5 (end zones), 'a' =
3.00 ft. (Fig. 30.3-1)
3. Per Code Section 30.2.2, the minimum wind load for C\&C shall not be less than 16 psf.
4. References : a. ASCE 7-16, "Minimum Design Loads for Buildings and Other Structures".
b. "Guide to the Use of the Wind Load Provisions of ASCE 7-02" by: Kishor C. Mehta and James M. Delahay (2004).

Wall Components and Cladding:

Wall Zones for Buildings with $\mathrm{h}<=\mathbf{6 0} \mathbf{f t}$.

Wall Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$.

WIND LOADING ANALYSIS - Roof Components and Cladding

Per ASCE 7-16 Code for Bldgs. of Any Height with Gable Roof $\theta<=45^{\circ}$ or Monoslope Roof $\theta<=3^{\circ}$ Using Part 1 \& 3: Analytical Procedure (Section 30.3 \& 30.5)

Input Data:

Wind Speed, V =	115	mph (Wind Map, Figure 26.5-1A-C)
Bldg. Classification $=$	II	(Table 1-1 Occupancy Category)
Exposure Category =	C	(Sect. 26.7)
Ridge Height, $\mathrm{hr}=$	10	ft. ($\mathrm{hr}>=\mathrm{he}$)
Eave Height, he =	9	ft. (he <= hr)
Building Width =	20	ft. (Normal to Building Ridge)
Building Length $=$	50.5	ft. (Parallel to Building Ridge)
Roof Type =	Gable	(Gable or Monoslope)
Topo. Factor, Kzt =	1	(Sect. 26.8.2 \& Figure 26.8-1)
Direct. Factor, Kd =	0.85	(Table 26.6-1)
Enclosed? (Y/N)	Y	(Sect. 26.2)
Hurricane Region?	N	
Component Name =	Joist	(Purlin, Joist, Decking, or Fastener)
Effective Area, $\mathrm{Ae}=$	133.3333	ft.^2 (Area Tributary to C\&C)
Overhangs? (Y/N)	Y	(if used, overhangs on all sides)

Resulting Parameters and Coefficients:

Roof Angle, $\theta=5.71$ deg.
Mean Roof Ht., $\mathrm{h}=9.00 \mathrm{ft}$. ($\mathrm{h}=$ he, for roof angle $<=10 \mathrm{deg}$.)
Roof External Pressure Coefficients, GCp:

GCp Zone 1-3 Pos. $=$	0.20	(Fig. 30.3-2A)
GCp Zone 1 Neg. $=$	-1.51	(Fig. 30.3-2A)
GCp Zone 2 Neg. $=$	-1.51	
(Fig. 30.3-2A)		

Positive \& Negative Internal Pressure Coefficients, GCpi (Table 26.13-1):

$$
\begin{array}{cc}
\text { +GCpi Coef. }= & 0.18 \\
\text { (GCpi Coef. }= & \text { (positive internal pressure) } \\
-0.18 & \text { (negative internal pressure) }
\end{array}
$$

If $z<=15$ then: $K z=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$, If $z>15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$ (Table 26.10-1, Footnote 1)

α	9.50	(Table 26.11-1)
zg $=$	900	(Table 26.11-1)
Kh =	0.85	($\mathrm{Kh}=\mathrm{Kz}$ evaluated at $\mathrm{z}=\mathrm{h}$)

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 26.10.2, Eq. 26.10-1)

$$
\mathrm{qh}=24.43 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{\star} \mathrm{Kzt}^{\star} \mathrm{Kd}^{\star} \mathrm{V}^{\wedge} 2(\mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h})
$$

Design Net External Wind Pressures (Sect. 30.3.2 or 30.5.2):
For $\mathrm{h}<=60 \mathrm{ft}$: $\mathrm{p}=\mathrm{qh}^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For h > 60 ft.: p = q* ${ }^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})(\mathrm{psf})$
where: $q=q$ for roof
$q i=q h$ for all walls (conservatively assumed per Sect. 30.5.2)

Component	$\begin{gathered} \mathrm{z} \\ (\mathrm{ft} .) \end{gathered}$	Kh	$\begin{gathered} \mathrm{qh} \\ (\mathrm{psf}) \end{gathered}$	p = Net Design Pressures (psf)			
				Zone 1,2,3 (+)	Zone 1 (-)	Zone 2 (-)	Zone 3 (-)
Joist For $z=h r:$	0	0.85	24.43	9.28	-41.30	-41.30	-23.94
	10.00	0.85	24.43	9.28	-41.30	-41.30	-23.94
For $z=$ he: For $\mathrm{z}=\mathrm{h}$:	9.00	0.85	24.43	9.28	-41.30	-41.30	-23.94
	9.00	0.85	24.43	9.28	-41.30	-41.30	-23.94

Notes: 1. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
2. Width of Zone 2 (edge), 'a' =
3. Width of Zone 3 (corner), 'a' =
3.00 ft .
3.00 ft ft .
4. For monoslope roofs with $\theta<=3$ degrees, use Fig. 30.4-2A for 'GCp' values with 'qh'.
5. For buildings with $h>60$ ' and $\theta>10$ degrees, use Fig. 30.6-1 for 'GCpi' values with 'qh'.
6. For all buildings with overhangs, use Fig. 30.4-2B for 'GCp' values per Sect. 30.10.
7. If a parapet $>=3^{\prime}$ in height is provided around perimeter of roof with $\theta<=10$ degrees, Zone 3 shall be treated as Zone 2.
8. Per Code Section 30.2.2, the minimum wind load for C\&C shall not be less than 16 psf.
9. References : a. ASCE 7-16, "Minimum Design Loads for Buildings and Other Structures".
b. "Guide to the Use of the Wind Load Provisions of ASCE 7-02" by: Kishor C. Mehta and James M. Delahay (2004).

Roof Components and Cladding:

Roof Zones for Buildings with $\mathrm{h}<=60 \mathrm{ft}$.
(for Gable Roofs $<=45^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

ROOF PLAN
Roof Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$.
(for Gable Roofs $<=10^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

Distance of applied force above footing "c" $=0.5 \mathrm{H}+0.05 \mathrm{H}=0.55 \times 12 \prime=6.60$ '
Applied Force "P" = (1/Cf1) x Net Area of Fence \times Wind Pressure where Cf1 is the Mesh and Fabric Size Coefficient from Table 9 and the Wind Pressure is the Design Wind Pressure from Table 13.

$$
P \quad=(0.16 \mathrm{sf} / \mathrm{sf})(120 \mathrm{sf})(45.99 \mathrm{lb} / \mathrm{sf})=883 \mathrm{lbs}
$$

Diameter of footing b $=30^{\prime \prime}=2.50^{\prime}$
Solving for "D"

$$
\begin{equation*}
\left.D \quad=0.5 A^{*}\left\{1+\left[1+\left(4.36^{*} c\right) / A\right)\right]^{1 / 2}\right\} \tag{2009IBCEq.18-1}
\end{equation*}
$$

$$
\text { where } \quad \begin{aligned}
\mathrm{A} & =2.34 \mathrm{P} / \mathrm{S} 1 * \mathrm{~b}=2.34 *(883 \mathrm{lbs}) / 150 \mathrm{psf} * 2.5 \\
& =5.51 \\
& =(0.5)(5.51) *\left\{1+[1+(4.36 * 6.60 / 5.51)]^{1 / 2}\right\} \\
& =9.63^{\prime}
\end{aligned}
$$

This required depth is less than the maximum embedment depth of 12.0 " specified in the 2009 International Building Code and also exceeds the minimum footing depth as set by ASTM F-567 which is 24 " + [3 " $\left.\mathrm{X}\left(12^{\prime}-4.0^{\prime}\right)\right]=24 "+24 "=48 "$.

Use a footing depth of 10.00'

Abstract

*Assumed allowable soil bearing pressure; actual value should be determined by appropriate means. Allowable lateral soil bearing pressure (S1) is permitted to be increased under specific conditions for embedded depth and application. Such increases should only be applied under the supervision of a professional knowledgeable and familiar with the conditions specific to the site and application.

TABLE 9									
Mesh and Fabric Size Coefficients (Cf1)*									
$\begin{array}{r} \text { FABF } \\ \text { WIRE SIZ } \end{array}$	$\begin{aligned} & \text { IC } \\ & =\text { (O.D.) } \end{aligned}$	$3 / 8$ "	1/2	5/8"	1"	$11 / 4$.	$13 / 4 "$	2"	$21 / 4 "$
metric equiv	(mm) =>	9.5	12.7	15.8	25.4	31.8	44.5	50.8	57.1
diam. (in)	iam.(mm)								
.\#5 (0.207)	5.26				2.92	3.52	4.73	5.33	5.92
\#6 (0.192)	4.88				3.30	3.75	5.06	5.71	6.37
\#8 (0.162)	4.11				3.58	4.36	5.89	6.67	7.44
\#9 (0.148)	3.76	1.77	2.20	2.60	3.87	4.73	6.40	7.26	8.09
10 (0.135)	3.43	1.88	2.36	2.80	4.19	5.13	6.96	7.90	8.82
11 (0.120)	3.0	2.06	2.60	3.10	4.65	5.71	7.77	8.83	9.86
12 (0.113)	2.87	2.16	2.72	3.25	4.91	6.04	8.22	9.35	10.44
* - (Cf1) =1 for solid panel fence									

26.91 psf / $5.89=4.56 \mathrm{psf} \therefore$ Use 5psf wind load against area of fence All options highlighted in Yellow are OK

Wind Shear Force Calculations

From 'ASCE 7-16 Wind Loading Analysis':

LOAD CASE $^{\prime} \mathrm{A}^{\prime}$	
$\mathrm{a}=3.00 \mathrm{feet}$	$2 \mathrm{a}=6.00 \mathrm{feet}$
Z1 $=5.52 \mathrm{psf}$	Z1E $=10.72 \mathrm{psf}$
Z2 $=-21.25 \mathrm{psf}$	Z2E $=-30.54 \mathrm{psf}$
Z3 $=-13.56 \mathrm{psf}$	Z3E $=-17.53 \mathrm{psf}$
Z4 $=-11.64 \mathrm{psf}$	Z4E $=-15.14 \mathrm{psf}$

LOAD CASE 'B'	
$\mathrm{a}=3.00 \mathrm{psf}$	$2 \mathrm{a}=6.00$ feet
$\mathrm{Z1}=-15.39 \mathrm{psf}$	$\mathrm{Z1E}=-16.12 \mathrm{psf}$
Z2 $=-21.25 \mathrm{psf}$	Z2E $=-30.54 \mathrm{psf}$
Z3 $=-13.44 \mathrm{psf}$	Z3E $=-17.34 \mathrm{psf}$
Z4 $=-15.39 \mathrm{psf}$	Z4E $=-16.12 \mathrm{psf}$

A^{\prime} FACTORED LOADS	
$0.6^{*} \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)^{*} 0.6=$	$\mathbf{4 . 6} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right)^{*} 0.6=$	$\mathbf{7 . 8} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{1}+\mathrm{Z}_{4}\right)^{*} 0.6=$	$\mathbf{1 0 . 3} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{1 \mathrm{E}}+\mathrm{Z}_{4 \mathrm{E}}\right)^{*} 0.6=$	$\mathbf{1 5 . 5} \mathbf{~ p s f}$
B^{\prime} FACTORED LOADS	
$0.6^{*} \mathrm{~W}_{\mathrm{r}}=\left(\mathrm{Z}_{2}+\mathrm{Z}_{3}\right)^{*} 0.6=$	$\mathbf{4 . 7} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{rE}}=\left(\mathrm{Z}_{2 \mathrm{E}}+\mathrm{Z}_{3 \mathrm{E}}\right)^{*} 0.6=$	$\mathbf{7 . 9} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{w}}=\left(\mathrm{Z}_{1}+\mathrm{Z}_{4}\right)^{*} 0.6=$	$\mathbf{0 . 0} \mathbf{~ p s f}$
$0.6^{*} \mathrm{~W}_{\mathrm{wE}}=\left(\mathrm{Z}_{1 \mathrm{E}}+\mathrm{Z}_{4 \mathrm{E}}\right)^{*} 0.6=$	$\mathbf{0 . 0} \mathbf{~ p s f}$

Wall Line	Wind Force (psf)	Wall ht (ft)	Parapet (W/ 2.25 mult.)	$\begin{gathered} \text { wall } \\ \text { line } \\ \text { dist. (ft) } \end{gathered}$	+	Wind Force (psf)	Truss Depth	$\begin{gathered} \mathrm{Wr} \text {, } \\ \text { We } \\ \text { truss } \\ \text { trib (ft) } \end{gathered}$	wall line dist (ft)	+	Shear, Upper (\#)	=	Wind Force (kips)
X1-1	9.60	9	6.75	50.50	+	9.60	0	1.50	50.5	+	0.00	,	3.09
X2-1	9.60	9	6.75	50.50	+	9.60	0	1.50	50.5	+	0.00	=	3.09
Y1-1	11.09	9	6.75	39.50	+	9.60	0	1.50	39.5	+	0.00	$=$	2.75

Seismic Shear Force Calculations

From 'ASCE7-16 Seismic Loading Analysis':

X1-1	42	50.5	39.5	+18	0	0	+ OSB	12.0	9	50.50	$.05 \mathrm{Wp}+$	0	$=$	$\mathbf{2 . 3 5}$
X2-1	42	50.5	$39.5+18$	0	0	+ OSB	12.0	9	50.50	$.05 \mathrm{Wp}+$	0	$=$	$\mathbf{2 . 3 5}$	Wind

Description: X1-1 Shear Wall

Perforated Shear Wall Calculation Sheet: This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

	19.75		Total length of wall
$\mathrm{L}=$	19.75	ft	Total length of shear wall
$\mathrm{L}_{\mathrm{w}}=$	10.66	It	Total length of full height segments
$\mathrm{H}=$	9.00	tt	height of shear wall
$\mathrm{H}^{\prime}=$	0.00	ft	Maximum opening height
$\mathrm{V}_{1}=$	3091		Total Wind force at top of wall
$\mathrm{w}_{\mathrm{DL} \text { self }}=$	108	plt	Self weight
$\mathrm{w}_{\text {DL }}$ above $=$	40.80	plt	Applied dead load
	7/16	in	Prefered OSB thickness
	1/2	in	Prefered Gyp thickness
	Y	y / n	Wall Connected to Concrete
	Y	y / n	Wall Connected to Truss or Joist
	N	y / n	Wall Connected to Gable / Drag Truss or Rim

SHEARWALL SEGMENTS	Aspect Ratio	Adjusted Length
5.33	1.69	5.33
5.33	1.69	5.33

Unit Base Shear			
$\begin{aligned} & \%_{\text {ofh }}=\mathrm{L}_{\mathrm{w}} / \mathrm{L}= \\ & \%_{o \mathrm{oh}}=\mathrm{H}^{\prime} / \mathrm{H}= \end{aligned}$	0.540	plf	Percent of full height segments Percent of maximum opening height
	0.000		
SCAF =	1.00		Shear capacity adjustment factors (NDS SDPWS Table)
$\mathrm{V}_{\text {base }}=\mathrm{V}_{1} / \mathrm{L}_{\mathrm{w}}=$	290		Unit base shear
$\mathrm{v}_{\text {req }}=\mathrm{v}_{\text {base }} /$ SCA	290	plf	Effective unit base shear
OIM =	27,815	lb ft	Overturning moment of total length of wall
Shear wall adjustmen			
RM =	29,021	lb ft	Resisting moment of total length of wall
$r=$	1.0000		
$\mathrm{CO}_{\mathrm{O}}=$	1.8527		
	156 plf		Blocking Unit Shear
	289.92		Force Calculated

Shear Transfer to Concrete:

1/2 Anchor Bolts @ 72 "O.C.
(3) Minimum

Holdown

$\mathrm{T}=\mathbf{9 7 6}$	lbs	Simpson LSTHD8
	OR:	Simpson DTT2Z

Ta	Type
2145	Strap
2145	Holdown

OSB Wall Sheathing attachment
Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
OR: 7/16" OSB W/ 1½ 16 Gage Staples @ 3" O.C.

Blocking / Nailing Framing Attachment
"No Blocking Required"

Description: X2-1 Shear Wall

Perforated Shear Wall Calculation Sheet: This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

	19.75
$\mathrm{L}=$	19.75
$\mathrm{L}_{\mathrm{w}}=$	10.32
$\mathrm{H}=$	9.00
$\mathrm{H}^{\prime}=$	0.00
$\mathrm{V}_{1}=$	3091
$\mathrm{w}_{\text {DL self }}=$	108
$\mathrm{w}_{\mathrm{DL} \text { above }}=$	40.80
	7/16
	1/2
	Y
	N

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wall
Self weight
Applied dead load
Prefered OSB thickness
Prefered Gyp thickness
Wall Connected to Concrete
Wall Connected to Truss or Joist
Wall Connected to Gable / Drag Truss or Rim

SHEARWAL \mathbf{L} SEGMENTS	Aspect Ratio	Adjusted Length
5.16	1.74	5.16
5.16	1.74	5.16

Unit Base Shear

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall

Shear wall adjustment factor

Shear Transfer to Concrete:
1/2 Anchor Bolts @ 72 " O.C.
Holdown
$\mathrm{T}=1008 \mathrm{lbs} \quad$ Simpson LSTHD8
OR: Simpson DTT2Z
(3) Minimum

Ta	Type
2145	Strap
2145	Holdow

OSB Wall Sheathing attachment
Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.
OR: 7/16" OSB W/ 1½ 16 Gage Staples @ 3" O.C.

Blocking / Nailing Framing Attachment
"No Blocking Required"

Description: Y1-1 Shear Wall

Perforated Shear Wall Calculation Sheet: This spreadsheet is made in conformance to the IBC Chapters 2305-2308 and AFPA's "SDPWS: Lateral Force Resisting Systems".

Shear Wall Forces

Total length of wall
Total length of shear wall
Total length of full height segments
height of shear wall
Maximum opening height
Total Wind force at top of wal
Self weight
Applied dead load
Prefered OSB thickness
Prefered Gyp thickness
Wall Connected to Concrete
Wall Connected to Truss or Joist
Wall Connected to Gable / Drag Truss or Rim

SHEARWAL \mathbf{L} SEGMENTS	Aspect Ratio	Adjusted Length
12.00	0.75	12.00
12	0.75	12.00

Unit Base Shear

Percent of full height segments
Percent of maximum opening height
Shear capacity adjustment factors (NDS SDPWS Table)
Unit base shear
Effective unit base shear
Overturning moment of total length of wall
Shear wall adjustment factor

Resisting moment of total length of wall

Blocking Unit Shear
Force Calculated
Shear Transfer to Concrete:
1/2 Anchor Bolts @ $72^{\text {" O.C. }}$
(3) Minimum
$\mathrm{T}=$ Not Req'd lbs

OSB Wall Sheathing attachment

Provide: 7/16" OSB W/ 8d Nails @ 6" O.C.

OR: 7/16" OSB W/ 1½ 16 Gage Staples @ 3" O.C.

Min Shear Wall Segment: 2.57 ft			
	$\mathrm{Va}=$	336	
	$\mathrm{Va}=$	434	$\mathbf{W 1}$

Blocking / Nailing Framing Attachment

"Typ. Gable / Drag Truss or Rim Nailing"

Three Sided Diaphragm Calculations

From NDS Wind \& Seismic 'Special Design Provisions for Wind \& Seismic " Section 4.2.5.2

Design Criteria	
Diaphragm Length	Diaphragm Width
L 19.75 feet	W 50.50 feet
Check For Length $<35 '$	OK
Length To Width Ratio	0.391
Check For <1:1 Length Ratio	OK

Forces in R1 \& R2 Due to Rotation		
P Design	$=$	2749 \#
R1 Due to Rotation	$=$	538 \#
R1 Due to Transverse Load	$=$	3091
Governing Inplane Load R1	$=$	$\mathbf{3 0 9 1} \#$
R2 Due to Rotation	$=$	$538 ~ \#$
R2 Due to Transverse Load	$=$	$3091 ~ \#$
Governing Inplane Load R2	$=$	$\mathbf{3 0 9 1} \#$

Wood Diaphragm Design (2018 NDS \& 2021 SDPWS)

Load/Panel Case	
Framing/Panels:	Perpendicular
Panels Staggered?:	Y
Framing Orient. In	Vertical
short direction:	
Blocked?:	N

$\mathrm{wt}=$
9.60 psf

Roof Pressure $=9.6 \mathrm{psf}$

Design of Roof Panels for Gravity Loads

Transient Deflection Limit:	$\mathrm{L} / 360$
Total Deflection Limit:	$\mathrm{L} / 180$

Sheathing Capacity (OSB):

Span Rating:	$40 / 20$
Thickness:	$19 / 32$
Max Load, L/360:	368 psf
Max Load, L/240:	552 psf
Max Load, L/180:	736 psf
Max Load, Bending:	352 psf
Max Load, Shear	283 psf

Check Panel Design (OSB):

Check Panel Design (OSB):			
	Allowable		Actual
Transient Deflection:	368 psf	>	100 psf
Total Deflection:	736 psf	$>$	117 psf
Bending	405 psf	>	117 psf
Shear	325 psf	$>$	117 psf
		OK	
(OSB Capacity Obtained from APA Q225G)			
Check Edge Support Requirements:			

Table M9.4-1 Panel Edge Support ${ }^{2}$

Sheathing Span Rating	Maximum Recommended Span (in.)		No Edge
	$\begin{gathered} \text { With } \\ \text { Edge Support } \end{gathered}$	Without Edge Support	
24/0	24	$19.2{ }^{1}$	
24/16	24	24	
32/16	32	28	Support
40/20	40	32	Required
48/24	48	36	Required

1. 20 in. for $3 / 8$ and $7 / 16$ performance category panels, 24 in . for $15 / 32$ and $1 / 2$ performance category panels.
2. Additional edge support is recommended when panel widths are less than 24 inches. Edge support requirements should be obtained from the manufacturer.

Project Name: Cascade Public Library Project \#: 2023-14473 Location: Cascade, Idaho	Project ID: Engineering: CRP PERFORMANCE Checker: VAL ENGINEERS $08 / 10 / 2023$
Masonry Slender Wall)5 beams 2023-14473 Cascade Public Library - Cascade Public Library Add.EC6
LIC\# : KW-06013883, Build:20.23.05.01	SHAWN REEDER ${ }^{\text {a }}$ (c) ENERCALC INC 1983-2023
DESCRIPTION: cmu wall	

Code References

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Calculations per TMS 402-16, IBC 2018, CBC 2019, ASCE 7-16

Construction Type: Grouted Hollow Concrete Masonry						
F'm	=	1.50 ksi	Nom. Wall Thickness	8 in	Temp Diff across thickness =	0.0 deg F
Fy - Yield	=	60.0 ksi	Actual Thickness	7.625 in	Min Allow Out-of-plane Defl Re=	0.0
Fr - Rupture	=	127.0 psi	Rebar "d" distance	3.8125 in		
$\mathrm{Em}=\mathrm{f}^{\prime} \mathrm{m}$ *	$=$	900.0	Lower Level Rebar		Minimum Vertical Steel \%	0.0020
Max\% of ρ bal.	=	0.007135	Bar Size \#			
Grout Density	$=$	140 pcf	Bar Spacing	48 in		
Block Weight	Normal Weight					
Wall Weight	=	47.0 psf				
Wall is gro	reba	cells only				

One-Story Wall Dimensions

Lateral Loads

Wind Loads :	Seismic Loads :	
Full area WIND load	26.9 psf	Wall Weight Seismic Load Input Method :Factor applied to wall weight entered
		Seismic factor to be applied to wall weight

$$
\mathrm{Fp}=\text { Wall Wt. * } 0.230=10.810 \mathrm{psf}
$$

Project Title:

Project Name: Cascade Public Library Project \#: 2023-14473 Location: Cascade, Idaho	\qquad	Engineering: CRP Checker: VAL 08/10/2023
Masonry Slender Wall)5 beams 2023-14473 Cascade Public Library - Cascade Public Library Add.EC6	
LIC\# : KW-06013883, Build:20.23.05.01	SHAWN REEDER	(c) ENERCALC INC 1983-2023
DESCRIPTION: cmu wall		

DESIGN SUMMARY
Results reported for "Strip Width" of 12.0 in

Governing Load Combination . .		Actual Values . . .		Allowable Values . . .	
PASS	Moment Capacity Check	Maximum Bending Stress Rat0.5883			
	+0.90D+W	Max Mu	-0.4843 k-ft	Phi * Mn	$0.8232 \mathrm{k}-\mathrm{ft}$
PASS	Service Deflection Check W Only	Actual Defl. Ratio L/ Max. Deflection	$\begin{gathered} 8,743 \\ 0.01647 \text { in } \end{gathered}$	Allowable Defl. Ratio /2 for	$\begin{array}{r} 180.0 \\ \text { Cantilever } \end{array}$
PASS	$\begin{aligned} & \text { Axial Load Check } \\ & \quad+1.20 \mathrm{D}+\mathrm{W} \end{aligned}$	Max Pu / Ag Location	$\begin{gathered} 8.319 \mathrm{psi} \\ 0.10 \mathrm{ft} \end{gathered}$	Max. Allow. Defl. $0.2 \text { * f'm }$	$\begin{gathered} 0.80 \mathrm{in} \\ 300.0 \mathrm{psi} \end{gathered}$
	Reinforcing Limit Check	Actual As/bd	0.001093	Max Allow As/bd	0.007135
		Maximum Reactions Top Horizontal Base Horizontal Vertical Reaction	for Load Com W Only on +D+0.5250	ination...	0.1614 k 0.2820 k

Project Name: Cascade Public Library Project \#: 2023-14473 Location: Cascade, Idaho		Engineering: CRP Checker: VAL 08/10/2023
Masonry Slender Wall)5 beams 2023-14473 Cascade Public Library - Cascade Public Library Add.EC6	
LIC\# : KW-06013883, Build:20.23.05.01	SHAWN REEDER	(c) ENERCALC INC 1983-2023

DESCRIPTION: cmu wall
E Only
0.1 0.00 k
0.000 k

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$3632 @ 19^{\prime} 81 / 4^{\prime \prime}$	$3996(3.50 ")$	Passed (91\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$1709 @ 19^{\prime} 61 / 2^{\prime \prime}$	2358	Passed (73\%)	1.15	$1.0 \mathrm{D}+1.0$ S (Adj Spans)
Moment (Ft-lbs)	$-6883 @ 19^{\prime} 81 / 4^{\prime \prime}$	10925	Passed (63\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Live Load Defl. (in)	$0.488 @ 9^{\prime} 3 / 4^{\prime \prime}$	0.974	Passed (L/479)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.558 @ 9^{\prime} 1 / 1^{\prime \prime}$	1.299	Passed (L/419)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

Supports	Bearing Length			Loads to Supports (Ibs)			
	Total	Available	Required	Dead	Snow	Factored	Accessories
1 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.75^{\prime \prime}$	175	1094	1269	Blocking
2 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	525	3107	3632	Web Stiffeners
3 - Stud wall - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	378	2392	2770	None
4 - Stud wall - DF	$5.50^{\prime \prime}$	$5.50^{\prime \prime}$	$1.75^{\prime \prime}$	62	$561 /-16$	623	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8^{\prime} o/c	
Bottom Edge (Lu)	$6^{\prime} 7{ }^{\prime \prime}$ o/c	

\bullet-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

Vertical Load	Location	Spacing	Dead (0.90)	Snow (1.15)	Comments
1 - Uniform (PSF)	0 to $50^{\prime} 3^{\prime \prime}$	$16^{\prime \prime}$	17.0	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Cameron Price	
Performance Engineers	
(208) 475-0040	
cprice@ inteframe.com	

CALC: H-101

Wood Type: Dim Lumber					
Species/Grade		DF-L \#2		Nom:	
Width		1.5		2	
	Depth	5.5		\# of Plies:	
	Span	2 ft			
High Moisture?		N	Trib:	2	
Dead	17		5.0 ft	\# of 2x Trimmers:	
Live	0	psf	0.0 ft		
Snow	100	$\begin{aligned} & \mathrm{psf} \\ & \mathrm{psf} \end{aligned}$	5.0 ft	1	
Wind	0		0.0 ft		
Controllo	ng Comb:	Snow			
Total L	Line Load:	585			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	-
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.30	-	-	-	-
Cb	-	-	1.25	-	-
Adjusted:	1346 psi	207 psi	781 psi	1600 ksi	580 ksi

Check Shear:

$\begin{aligned} & V=w^{*} t^{*} L^{*} 0.5 \\ & f v=3 V / 2 A \end{aligned}$		$\begin{array}{r} V= \\ f v= \end{array}$	$\begin{array}{r} 585 \\ 53.18 \end{array}$	
F'v > fv	F'V =	207 psi	F'v OK	$\begin{gathered} 53.18 \mathrm{ps} \\ (0.26) \\ \hline \end{gathered}$
Check Bending:				
$\mathrm{M}=\mathrm{w}^{*} \mathrm{~L}^{\wedge} 2 / 8$	$\mathrm{M}=$		292.5 ft -lbs	
$\mathrm{fb}=6 \mathrm{M} / \mathrm{bd}^{\wedge} 2$	$\mathrm{fb}=$		232.07 psi	
$\mathrm{F}^{\prime} \mathrm{b}>\mathrm{fb}$	$\mathrm{F}^{\prime} \mathrm{b}=$	1346 psi	F'b OK	$\begin{aligned} & 232.07 \mathrm{ps} \\ & (0.17) \\ & \hline \end{aligned}$
Check Deflection				
$\delta=5 \mathrm{wL} \wedge$ / 384El		$\delta \mathrm{t}=$	0.003 in (Total)	
		$\delta \mathrm{L}=$	0.003	in (Transient)
St < L/180	$\delta \mathrm{t}=$	SPAN/	7584	бt OK
$\delta \mathrm{L}$ < L/240	$\delta \mathrm{L}=$	SPAN/	8873	бL OK

Check Bearing

$P=V=w^{*} t^{*} L^{*} 0.5$	$P=$	585 lbs
fc perp $=P / A$	fc perp $=$	130 psi

$\mathrm{F}^{\prime} \mathrm{C}$ perp>fc perp

$$
\mathrm{F}^{\prime} \mathrm{c} \text { perp }=781 \mathrm{psi} \quad>\quad 130 \mathrm{psi}
$$

F'c perp OK
(0.17)

Calculations based off 2018 NDS

Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

CALC: H-102

Wo	ood Type:	Dim Lumbe			
Speci	es/Grade	DF-L \#2		Nom:	
	Width	1.5		2	
	Depth	7.25		8	
	Span	3.25		\# of Plies:	
High	Moisture?	N	Trib:	2	
Dead	17	psf	15.0 ft		
Live	0	psf	0.0 ft	\# of 2x Tri	mmers:
Snow	100	psf	15.0 ft	1	
Wind	0	psf	0.0 ft		
Controllo	ng Comb:	Snow			
Total L	ine Load:	1755			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	-
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.20	-	-	-	-
Cb	-	-	1.25	-	-
Adjusted:	1242 psi	207 psi	781 psi	1600 ksi	580 ksi
Check Shear:					
$\mathrm{V}=\mathrm{w}^{*} \mathrm{t}^{*} \mathrm{~L}^{*} 0.5$		$\mathrm{V}=2851.88 \mathrm{lbs}$			
$\mathrm{fv}=3 \mathrm{~V} / 2 \mathrm{~A}$		$\mathrm{fv}=196.68$			
$\mathrm{F}^{\prime} \mathrm{v}>\mathrm{fv}$	F'v =	207 psi	F'v OK	$\begin{aligned} & 196.68 \\ & (0.95) \end{aligned}$	

Check Bending:

$\begin{aligned} & M=w^{*} L^{\wedge} 2 / 8 \\ & f b=6 M / b d^{\wedge} 2 \end{aligned}$		$\begin{aligned} & M= \\ & \mathrm{fb}= \end{aligned}$	$\begin{aligned} & 2317.1 \\ & 1058.0 \end{aligned}$	
$\mathrm{F}^{\prime} \mathrm{b}$ > fb	$\mathrm{F}^{\prime} \mathrm{b}=$	1242 psi	F'b OK	$\begin{aligned} & 1058.01 \mathrm{ps} \\ & (0.85) \\ & \hline \end{aligned}$
Check Deflection				
$\delta=5 \mathrm{wL}$ ^4 / 384EI		$\delta \mathrm{t}=$	0.029 in (Total)	
		$\delta \mathrm{L}=$	0.025	in (Transient)
St < L/180	$\delta \mathrm{t}=$	SPAN/	1349	ठt OK
ठL < L/240	$\delta L=$	SPAN/	1579	ठL OK

Check Bearing			
$\mathrm{P}=\mathrm{V}=\mathrm{w}^{*} \mathrm{t}^{*} \mathrm{~L}^{*} 0.5$	$\mathrm{P}=2851.88 \mathrm{lbs}$		
fc perp $=P / \mathrm{A}$	fc perp $=633.75$ psi		
F'c perp>fc perp			
F'c perp =	781 psi	>	633.75 psi
	F'c	perp OK	

Calculations based off 2018 NDS
Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

CALC: H-103

Wood Type: Dim Lumber					
Species/Grade		DF-L \#2		Nom:	
Width		1.5		2	
Depth		9.25	in	10	
	Span	3.16		\# of Plies:	
High Moisture?		N Trib:		2	
Dead	17		19.83 ft	\# of 2x Trimmers:	
Live	0	psf	0.0 ft		
Snow	100	$\left\lvert\, \begin{aligned} & \text { psf } \\ & \text { psf } \end{aligned}\right.$	19.83 ft	2	
Wind	0		0.0 ft		
Controllong Comb:		Snow			
Total Line Load:		2320.11 plf			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	-
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.10	-	-	-	-
Cb	-	-	1.13	-	-
Adjusted:	1139 psi	207 psi	703 psi	1600 ksi	580 ksi

Check Shear:

$\begin{aligned} & V=w^{*} t^{*} L^{*} 0.5 \\ & f v=3 V / 2 A \end{aligned}$		$\begin{array}{r} V= \\ f v= \end{array}$	$\begin{array}{r} 3665.77 \\ 198.15 \end{array}$	
$F^{\prime} v>f v$	F'V =	207 psi	F'v OK	$\begin{aligned} & 198.15 \mathrm{ps} \\ & (0.96) \\ & \hline \end{aligned}$
Check Bending:				
$\mathrm{M}=\mathrm{w}^{*} \mathrm{~L}^{\wedge} 2 / 8$	$M=$		2895.96 ft -lbs	
$\mathrm{fb}=6 \mathrm{M} / \mathrm{bd}^{\wedge} 2$	$f b=$		812.31 psi	
$\mathrm{F}^{\prime} \mathrm{b}>\mathrm{fb}$	$\mathrm{F}^{\prime} \mathrm{b}=$	1139 psi	F'b OK	$\begin{aligned} & 812.31 \mathrm{ps} \\ & (0.71) \\ & \hline \end{aligned}$
Check Deflection				
$\delta=5 \mathrm{wL}$ ^ $4 / 384 \mathrm{El}$		$\delta \mathrm{t}=$	0.016 in (Total)	
		$\delta \mathrm{L}=$	0.014	in (Transient)
St < L/180	$\delta \mathrm{t}=$	SPAN/	2306	ot OK
סL < L/240	$\delta L=$	SPAN/	2698	ठL OK

Check Bearing

$P=V=w^{*} t^{*} L^{*} 0.5$	$P=3665.77 \mathrm{lbs}$
fc perp $=P / A$	fc perp $=407.308 \mathrm{psi}$

$F^{\prime} \mathrm{c}$ perp>fc perp

$$
\mathrm{F}^{\prime} \mathrm{c} \text { perp }=703 \mathrm{psi} \quad>\quad 407.308 \mathrm{psi}
$$

$$
\text { F'c perp OK } \quad(0.58)
$$

Calculations based off 2018 NDS

Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

CALC: H-104

Wood	ood Type:	Dim Lumb			
Specie	es/Grade	DF-L \#2		Nom:	
	Width	1.5		2	
	Depth	5.5		6	
	Span		ft	\# of Plies:	
High M	Moisture?	N	Trib:	2	
Dead	17	psf	3.0 ft		
Live	0	psf	0.0 ft	\# of $2 \times$ Tri	mmers:
Snow	100	psf	3.0 ft	1	
Wind	0	psf	0.0 ft		
Controllon	ng Comb:	Snow			
Total Lin	ine Load:	351			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	-
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.30	-	-	-	-
Cb	-	-	1.25	-	-
Adjusted:	1346 psi	207 psi	781 psi	1600 ksi	580 ksi
Check Shear:					
$V=w^{*} t^{*} L^{*} 0.5$		$\mathrm{V}=\quad 351$		lbs	
$\mathrm{fv}=3 \mathrm{~V} / 2 \mathrm{~A}$		$\mathrm{fv}=$	31.91 psi		
$\mathrm{F}^{\prime} \mathrm{v}>\mathrm{fv}$	$\mathrm{F}^{\prime} \mathrm{V}=$	207 psi	F'v OK	31.91 psi	
				(0.15)	

Check Bending:

Calculations based off 2018 NDS
Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

CALC: H-105

Wood Type: Dim Lumber					
Species/Grade		DF-L \#2		Nom:	
Width		1.5		2	
Depth		7.25		8	
	Span	6 ft		\# of Plies:	
High Moisture?		N	Trib:	2	
Dead	17	psf	4.0 ft	\# of 2x Trimmers:	
Live	0	psf	0.0 ft		
Snow	100	$\begin{aligned} & \mathrm{psf} \\ & \mathrm{psf} \end{aligned}$	4.0 ft	2	
Wind	0		0.0 ft		
Controllo	ng Comb:	Snow			
Total L	Line Load:	468			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	-
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.20	-	-	-	-
Cb	-	-	1.13	-	-
Adjusted:	1242 psi	207 psi	703 psi	1600 ksi	580 ksi

Check Shear:

$\begin{aligned} & V=w^{*} t^{*} L^{*} 0.5 \\ & f v=3 V / 2 A \end{aligned}$		$\begin{array}{r} v= \\ f v= \end{array}$	$\begin{gathered} 1404 \mathrm{lbs} \\ 96.83 \mathrm{psi} \end{gathered}$	
$\mathrm{F}^{\prime} \mathrm{v}$ > fv	F'V =	207 psi	F'v OK	$\begin{gathered} 96.83 \mathrm{ps} \\ (0.47) \\ \hline \end{gathered}$
Check Bending:				
$\mathrm{M}=\mathrm{w}^{*} \mathrm{~L}^{\wedge} 2 / 8$	$M=$		2106 ft -lbs	
$\mathrm{fb}=6 \mathrm{M} / \mathrm{bd} \wedge 2$	$\mathrm{fb}=$		961.60 psi	
$\mathrm{F}^{\prime} \mathrm{b}>\mathrm{fb}$	$\mathrm{F}^{\prime} \mathrm{b}=$	1242 psi	F'b OK	$\begin{aligned} & 961.60 \mathrm{ps} \\ & (0.77) \end{aligned}$
Check Deflection				
$\delta=5 \mathrm{wL}$ ^4 / 384EI		$\delta \mathrm{t}=$	0.090	in (Total)
		$\delta \mathrm{L}=$	0.077	in (Transient)
St < L/180	$\delta \mathrm{t}=$	SPAN/	804	ठt OK
$\delta \mathrm{L}<\mathrm{L} / 240$	$\delta \mathrm{L}=$	SPAN/		бL OK

Check Bearing

$\mathrm{P}=\mathrm{V}=\mathrm{w}^{*} \mathrm{t}^{*} \mathrm{~L}^{*} 0.5$	$\mathrm{P}=$	1404 lbs
fc perp $=P / A$	fc perp $=$	156 psi
F'C perp>fc perp		

F'c perp>fc perp

$$
\mathrm{F}^{\prime} \mathrm{c} \text { perp }=703 \mathrm{psi} \quad>\quad 156 \mathrm{psi}
$$

F'c perp OK (0.22)

Calculations based off 2018 NDS

Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

CALC: H-106

	ood Type:	Dim Lumb			
Speci	es/Grade	DF-L \#2		Nom:	
	Width	1.5		2	
	Depth	9.25	in	10	
	Span		ft	\# of Plies:	
High	Moisture?	N	Trib:	2	
Dead	17	psf	4.0 ft		
Live	0	psf	0.0 ft	\# of $2 \times$ Tri	mmers:
Snow	100	psf	4.0 ft	1	
Wind	0	psf	0.0 ft		
Controllo	ng Comb:	Snow			
Total Lis	ine Load:	468			
	Fb	Fv	Fc perp	E	Emin
Reference:	900	180	625	1600000	580000
Cd	1.15	1.15	-	-	
Cm	1.00	1.00	1.00	1.00	1.00
Ct	1.00	1.00	1.00	1.00	1.00
Cf	1.10	-	-	-	-
Cb	-	-	1.25	-	-
Adjusted:	1139 psi	207 psi	781 psi	1600 ksi	580 ksi
Check Shear:					
$\mathrm{V}=\mathrm{w}^{*} \mathrm{t}^{*} \mathrm{~L}^{*} 0.5$		$\mathrm{V}=1872 \mathrm{lbs}$			
$\mathrm{fv}=3 \mathrm{~V} / 2 \mathrm{~A}$		$\mathrm{fv}=101.19$			
F'v > fv	F'v =	207 psi	>	101.19 psi	

Check Bending:

Check Bearing

$\mathrm{P}=\mathrm{V}=\mathrm{w}^{*} \mathrm{t}^{*} \mathrm{~L}^{*} 0.5$	$\mathrm{P}=$	1872 lbs
fc perp $=\mathrm{P} / \mathrm{A}$	fc perp $=$	416 psi

F'c perp>fc perp
F'c perp $=781 \mathrm{psi} \quad>\quad 416 \mathrm{psi}$
F'c perp OK
(0.53)

Calculations based off 2018 NDS
Deflection Criteria based off IBC 1604.3
ASD Design Methodology Used

Tall Wall Calculations

This spreadsheet is used for designing a stud wall according to the NDS.
Inputs are in ITALICS and outputs are in BOLDFACE.

Code References

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2021

General Information

Pole Footing Shape	Circular
Pole Footing Diameter	16.0 in
Calculate Min. Depth for Allowable Pressures	
No Lateral Restraint a	
Allow Passive	250.0 pcf
Max Passive	1,500.0 psf

Controlling Values					
Governing Load Combinati甲D+0.60W					
Lateral Load	0.1314 k	Distributed Load	Soil Surface		
$\begin{array}{lll}\text { Moment } & & 0.3942 \mathrm{k} \text {-ft } \\ & \text { NO Ground Surface Restraint }\end{array}$				-1	
		No lateral restraint			
Actual	209.526 psf			$\stackrel{\sim}{\sim}$	
Allowable	210.468 psf			$\stackrel{\text { ¢ }}{ }$	
Minimum Required Depth	2.625 ft				
Footing Base Area	$1.396 \mathrm{ft}^{\wedge} 2$				
Maximum Soil Pressure	0.1432 ksf				

Applied Loads

Lateral Concentrated Load (k)	Lateral Distributed Loads (k				Vertical Load (k)	
D : Dead Load 0.0 k			k/ft			. 20 k
Lr: Roof Live k			k/ft			k
L: Live k			k/ft			k
S:Snow k			k/ft			k
W: Wind k	0.03650		k/ft			k
E : Earthquake k			k/ft			k
H : Lateral Earth k	TOP of Load above ground surface 6.0 BOTTOM of Load above ground surface 0.0		k/ft			k
Load distance above ground surface $\quad 6.0 \mathrm{ft}$			ft ft			
Load Combination Results						
	Forces @ Ground Surface		Required	Pressure at $1 / 3$ Depth		Soil Increase
Load Combination	Loads - (k)	Moments - (ft-k)		Actual - (psf)	Allow - (psf)	Factor
D Only	0.000	0.000	0.13	0.0	0.0	1.000
+D+0.60W	0.131	0.394	2.63	209.5	210.5	1.000
+D+0.450W	0.099	0.296	2.38	186.7	188.7	1.000
+0.60D+0.60W	0.131	0.394	2.63	209.5	210.5	1.000
+0.60D	0.000	0.000	0.13	0.0	0.0	1.000

RetainPro (c) 1987-2017, Build 11.17.03.17 License: KW-06059986 License To : Performance Engineers	Restrained Retaining
Criteria	
Retained Height	3.33 ft
Wall height above soil	0.67 ft
Total Wall Height	4.00 ft
Top Support Height	4.00 ft
Slope Behind Wall	0.00
Height of Soil over Toe	0.00 in
Load Factors	
Building Code	IBC 2015,ACI 318-14,ACI 530-13
Dead Load	1.200
Live Load	1.600
Earth, H	1.600
Wind, W	1.000
Seismic, E	1.000

Soil Data

Allow Soil Bearing		=	1,500.0 psf	
Equivalent Fluid Pressure Method				
At-rest Heel Pressure	=		32.0 psf/ft	
	=			
Passive Pressure	=		250.0 psf/ft	
Soil Density		=	110.00 pcf	
Footing\|	Soil Frictior		=	0.400
Soil height to ignore for passive pressure		$=$	12.00 in	

Surcharge Loads

| Surcharge Over Heel
 \ggg Used To Resist Sliding \& Overturning | 40.0 psf |
| :--- | :--- | :--- |
| Surcharge Over Toe
 Used for Sliding \& Overturning | 0.0 psf |

Axial Load Applied to Stem

Axial Dead Load	$=$	$1,160.0 \mathrm{lbs}$
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

| RetainPro (c) 1987-2017, Build 11.17.03.17
 License : KW-06059986,
 License To : Performance Engineers | Restrain |
| :--- | :--- | ---: |
| Uniform Lateral Load Applied to Stem | |

Adjacent Footing Load

Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type	Line Load	
Base Above/Below Soil		0
\quad		0.0 ft
\quad at Back of Wall	$=$	0.300

Earth Pressure Seismic Load

K_{h} Soil Density Multiplier	$=$	0.200 g
Added seismic per unit area	$=$	0.0 psf

Stem Weight Seismic Load

$\mathrm{F}_{\mathrm{p}} / \mathrm{W}_{\mathrm{p}}$ Weight Multiplier	$=$	0.000 g
Added seismic per unit area	$=$	0.0 psf

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Concrete Stem Construction

Thickness $=$	6.00 in
Wall Weight	$=75.0 \mathrm{psf}$

Fy $=\quad 60,000 \mathrm{psi}$
$\mathrm{f}^{\prime}=\quad 2,500 \mathrm{psi}$

Stem is FIXED to top of footing

		@ Top Support	Mmax Between Top \& Base	@ Base of Wall
		Stem OK	Stem OK	Stem OK
Design Height Above Ftg	=	4.00 ft	2.18 ft	0.00 ft
Rebar Size	=	\# 4	\# 4	\# 4
Rebar Spacing	=	18.00 in	18.00 in	18.00 in
Rebar Placed at	=	Center	Center	Center
Rebar Depth 'd'	=	3.00 in	3.00 in	3.00 in
Design Data				
$\mathrm{fb} / \mathrm{FB}+\mathrm{fa} / \mathrm{Fa}$	=	0.000	0.048	0.110
Mu....Actual	=	$0.0 \mathrm{ft-} \mathrm{\#}$	$81.7 \mathrm{ft}-\mathrm{\#}$	$188.4 \mathrm{ft-} \mathrm{\#}$
Mn * Phi.....Allowable	=	1,705.6 ft-\#	1,705.6 ft-\#	1,705.6 ft-\#
Shear Force @ this height	=	69.8 lbs		289.5 lbs
Shear.....Actual	=	1.94 psi		8.04 psi
Shear.....Allowable	=	75.00 psi		75.00 psi

Other Acceptable Sizes \& Spacings:

Footing Strengths \& Dimensions

Toe Width	$=$	0.42 ft
Heel Width	$=$	0.92
Total Footing Width	$=$	1.34
Footing Thickness	$=$	8.00 in
Key Width	$=$	0.00 in
Key Depth	$=$	0.00 in
Key Distance from Toe	$=$	0.00 ft
f'c	$=$	$2,500 \mathrm{psi}$
Fy	$=$	$60,000 \mathrm{psi}$
Footing Concrete Density	$=$	150.00 pcf
Min. As \%	$=$	$0.0018 \mathrm{ftm}=1.75 \mathrm{in}$

RetainPro (c) 1987-2017, Build 11.17.03.17 License : KW-06059986 License To : Performance Engineers	Restrained Retaining W		
Footing Design Results			
		Toe	Heel
Factored Pressure	=	1,741	1,419 psf
Mu' : Upward	=	151	$128 \mathrm{ft}-\#$
Mu' : Downward	=	11	$55 \mathrm{ft}-\mathrm{\#}$
Mu: Design	=	140	-73 ft-\#
Actual 1-Way Shear	=	0.10	5.15 psi
Allow 1-Way Shear	=	75.00	75.00 psi
Min footing T\&S reinf Area	0.23 in2		
Min footing T\&S reinf Area per fo	0.17 in2 /ft		
If one layer of horizontal bars:	If two \#4 \#5 \#6	layers of (2 13.89 in 21.53 in @ 30.56 in	

Summary of Forces on Footing : Slab is NOT providing sliding restraint, stem is FIXED at footing

Forces acting on footing for sliding \& soil pressure. Sliding Forces		
Stem Shear @ Top of		-181.5
Heel Active Pressure	=	-85.9
Sliding Force	=	267.4

Net Moment Used For Soil Pressure Calculations
40.0 ft-\#

Load \& Moment Summary For Footing : For Soil Pressure Calcs

Moment @ Top of Footing Applied from Stem		$=$				-118.5 ft-\#	
Surcharge Over Heel		16.8		1.13		19.0	
Adjacent Footing Load	$=$		lbs		ft		$\mathrm{ft}-\#$
Axial Dead Load on Stem	$=$	1,160.0	lbs	0.67	ft	777.2	ft-\#
Soil Over Toe	=		lbs		ft		$\mathrm{ft}-\#$
Surcharge Over Toe	$=$		lbs		ft		ft-\#
Stem Weight	$=$	299.8	lbs	0.67	ft	200.8	ft -\#
Soil Over Heel	$=$	153.8	lbs	1.13	ft	173.8	$\mathrm{ft}-\#$
Footing Weight	$=$	134.0	lbs	0.67	ft	89.8	ft -\#
Total Vertical Force	三	1,764.4	lbs	Base M	Moment	1,142.1	$\mathrm{ft}-\#$

[^0]

Project Name: Cascade Public Library Project \#: 2023-14473 Location: Cascade, Idaho	PERFORMANCE	Engineering: CRP Checker: VAL 08/10/2023
Wall Footing		
Lic. \#: KW-06007473		SHAWN REEDER

DESCRIPTION: 16"x8" Ext Footing

Footing Has NO Overturning
Sliding Stability
$\left.\begin{array}{llllllllll}\hline \begin{array}{l}\text { Force Application Axis } \\ \text { Load Combination... }\end{array} & & \text { Sliding Force }\end{array}\right]$

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16
Load Combinations Used : IBC 2018

General Information

Applied Loads

[^0]: Vertical component of active lateral soil pressure IS considered in the calculation of soil bearing pressures.

